Execution Time0.32s

Test: TMVA-DNN-RNN-FullRNN-Cpu (Passed)
Build: PR-4888-x86_64-ubuntu16-gcc54-opt (sft-ubuntu-1604-4) on 2020-01-29 15:06:46
Repository revision: 064d59bfd71416a01f04c13c18f1bf5167c3742e

Test Timing: Passed
Processors1

Show Command Line
Display graphs:

Test output
Training RNN to identity firstCopying output into input
Error in <AddBasicRNNLayer>: Inconsistent time steps with input layout - it should be 1 instead of 1
iteration : 1  loss: 0.369204
iteration : 2  loss: 0.163095
iteration : 3  loss: 0.0769281
iteration : 4  loss: 0.0414277
iteration : 5  loss: 0.0268388
iteration : 6  loss: 0.020787
iteration : 7  loss: 0.0182111
iteration : 8  loss: 0.0170554
iteration : 9  loss: 0.0164847
iteration : 10  loss: 0.0161585
iteration : 11  loss: 0.0159363
iteration : 12  loss: 0.0157599
iteration : 13  loss: 0.0156045
iteration : 14  loss: 0.0154595
iteration : 15  loss: 0.0153204
iteration : 16  loss: 0.0151849
iteration : 17  loss: 0.015052
iteration : 18  loss: 0.0149215
iteration : 19  loss: 0.0147929
iteration : 20  loss: 0.0146661
iteration : 21  loss: 0.014541
iteration : 22  loss: 0.0144177
iteration : 23  loss: 0.0142959
iteration : 24  loss: 0.0141757
iteration : 25  loss: 0.014057
iteration : 26  loss: 0.0139398
iteration : 27  loss: 0.013824
iteration : 28  loss: 0.0137097
iteration : 29  loss: 0.0135966
iteration : 30  loss: 0.0134849
iteration : 31  loss: 0.0133745
iteration : 32  loss: 0.0132654
iteration : 33  loss: 0.0131575
iteration : 34  loss: 0.0130507
iteration : 35  loss: 0.0129451
iteration : 36  loss: 0.0128407
iteration : 37  loss: 0.0127374
iteration : 38  loss: 0.0126351
iteration : 39  loss: 0.0125339
iteration : 40  loss: 0.0124337
iteration : 41  loss: 0.0123345
iteration : 42  loss: 0.0122362
iteration : 43  loss: 0.0121389
iteration : 44  loss: 0.0120426
iteration : 45  loss: 0.0119471
iteration : 46  loss: 0.0118525
iteration : 47  loss: 0.0117588
iteration : 48  loss: 0.0116659
iteration : 49  loss: 0.0115738
iteration : 50  loss: 0.0114825
Error in <AddBasicRNNLayer>: Inconsistent time steps with input layout - it should be 5 instead of 5
Training RNN to simple time dependent data iter = 1 loss: 0.652216
iter = 2 loss: 0.563164
iter = 3 loss: 0.546269
iter = 4 loss: 0.549877
iter = 5 loss: 0.512489
iter = 6 loss: 0.519094
iter = 7 loss: 0.46723
iter = 8 loss: 0.462032
iter = 9 loss: 0.440627
iter = 10 loss: 0.452004
iter = 11 loss: 0.42585
iter = 12 loss: 0.450755
iter = 13 loss: 0.407041
iter = 14 loss: 0.415561
iter = 15 loss: 0.384014
iter = 16 loss: 0.400755
iter = 17 loss: 0.365504
iter = 18 loss: 0.362133
iter = 19 loss: 0.322485
iter = 20 loss: 0.303011
iter = 21 loss: 0.246452
iter = 22 loss: 0.249999
iter = 23 loss: 0.293063
iter = 24 loss: 0.353314
iter = 25 loss: 0.320112
iter = 26 loss: 0.248796
iter = 27 loss: 0.240101
iter = 28 loss: 0.208791
iter = 29 loss: 0.213358
iter = 30 loss: 0.205418
iter = 31 loss: 0.205506
iter = 32 loss: 0.186889
iter = 33 loss: 0.187535
iter = 34 loss: 0.171312
iter = 35 loss: 0.168958
iter = 36 loss: 0.152434
iter = 37 loss: 0.146599
iter = 38 loss: 0.128409
iter = 39 loss: 0.119499
iter = 40 loss: 0.09591
iter = 41 loss: 0.0831737
iter = 42 loss: 0.0700183
iter = 43 loss: 0.065324
iter = 44 loss: 0.0624292
iter = 45 loss: 0.0602997
iter = 46 loss: 0.0584617
iter = 47 loss: 0.0567904
iter = 48 loss: 0.055232
iter = 49 loss: 0.053764
iter = 50 loss: 0.0523734

2x64 matrix is as follows

     |       0    |       1    |       2    |       3    |       4    |
----------------------------------------------------------------------
   0 |          1           1           0           1           0 
   1 |     0.9877      0.9715     0.02679      0.9778     0.04185 


     |       5    |       6    |       7    |       8    |       9    |
----------------------------------------------------------------------
   0 |          1           0           1           1           1 
   1 |     0.9791     0.04858      0.9546       0.933      0.9704 


     |      10    |      11    |      12    |      13    |      14    |
----------------------------------------------------------------------
   0 |          1           1           0           1           1 
   1 |     0.9675      0.9706     0.04277      0.9699       0.984 


     |      15    |      16    |      17    |      18    |      19    |
----------------------------------------------------------------------
   0 |          1           0           1           0           0 
   1 |     0.9628     0.04017      0.9462     0.03788      0.1143 


     |      20    |      21    |      22    |      23    |      24    |
----------------------------------------------------------------------
   0 |          1           0           0           0           1 
   1 |     0.9181     0.03371     0.03745       0.133      0.9769 


     |      25    |      26    |      27    |      28    |      29    |
----------------------------------------------------------------------
   0 |          1           1           0           0           1 
   1 |      0.937      0.9747     0.03267     0.03353      0.9437 


     |      30    |      31    |      32    |      33    |      34    |
----------------------------------------------------------------------
   0 |          1           0           0           0           0 
   1 |     0.9793     0.03995     0.03897     0.03668     0.08032 


     |      35    |      36    |      37    |      38    |      39    |
----------------------------------------------------------------------
   0 |          1           0           0           1           0 
   1 |     0.9338     0.09379     0.04014      0.9834     0.03948 


     |      40    |      41    |      42    |      43    |      44    |
----------------------------------------------------------------------
   0 |          0           1           1           1           1 
   1 |    0.04586      0.7475      0.9759       0.954      0.9811 


     |      45    |      46    |      47    |      48    |      49    |
----------------------------------------------------------------------
   0 |          1           0           0           1           0 
   1 |     0.9299       0.177     0.04168      0.8973     0.03994 


     |      50    |      51    |      52    |      53    |      54    |
----------------------------------------------------------------------
   0 |          0           0           1           1           0 
   1 |    0.04229     0.09564       0.973      0.9818      0.0391 


     |      55    |      56    |      57    |      58    |      59    |
----------------------------------------------------------------------
   0 |          1           1           0           1           0 
   1 |     0.9827      0.9806     0.04289      0.9844     0.04194 


     |      60    |      61    |      62    |      63    |
----------------------------------------------------------------------
   0 |          0           1           1           1 
   1 |    0.08785      0.9721      0.9578      0.9784 

ROC integral is 0.453247
Test full RNN passed : Efficiencies are 0 and 1