Execution Time3.08s

Test: gtest-tmva-tmva-test-envelope-TMVA-Classification (Passed)
Build: v6-20-00-patches-x86_64-mac1015-clang110-opt (macphsft19.dyndns.cern.ch) on 2020-01-25 01:43:52

Test Timing: Passed
Processors1

Show Command Line
Display graphs:

Test output
Running main() from gtest_main.cc
[==========] Running 2 tests from 2 test cases.
[----------] Global test environment set-up.
[----------] 1 test from ClassifierTest1
[ RUN      ] ClassifierTest1.BasicTests
[TFile::Cp] Total 0.20 MB	|>...................| 0.00 % [0.0 MB/s][TFile::Cp] Total 0.20 MB	|====================| 100.00 % [2.2 MB/s]
Info in <TFile::OpenFromCache>: using local cache copy of http://root.cern.ch/files/tmva_class_example.root [./files/tmva_class_example.root]
create data set info dataset
DataSetInfo              : [dataset] : Added class "Signal"
                         : Add Tree TreeS of type Signal with 6000 events
DataSetInfo              : [dataset] : Added class "Background"
                         : Add Tree TreeB of type Background with 6000 events
                         : Loading booked method: [NON-XML-CHAR-0x1B][1mBDT BDTB[NON-XML-CHAR-0x1B][0m
                         : 
                         : Building event vectors for type 2 Signal
                         : Dataset[dataset] :  create input formulas for tree TreeS
                         : Building event vectors for type 2 Background
                         : Dataset[dataset] :  create input formulas for tree TreeB
DataSetFactory           : [dataset] : Number of events in input trees
                         : 
                         : 
                         : Number of training and testing events
                         : ---------------------------------------------------------------------------
                         : Signal     -- training events            : 1000
                         : Signal     -- testing events             : 5000
                         : Signal     -- training and testing events: 6000
                         : Background -- training events            : 1000
                         : Background -- testing events             : 5000
                         : Background -- training and testing events: 6000
                         : 
DataSetInfo              : Correlation matrix (Signal):
                         : ----------------------------------------
                         :           myvar1  myvar2    var3    var4
                         :  myvar1:  +1.000  -0.034  +0.771  +0.930
                         :  myvar2:  -0.034  +1.000  -0.100  +0.046
                         :    var3:  +0.771  -0.100  +1.000  +0.856
                         :    var4:  +0.930  +0.046  +0.856  +1.000
                         : ----------------------------------------
DataSetInfo              : Correlation matrix (Background):
                         : ----------------------------------------
                         :           myvar1  myvar2    var3    var4
                         :  myvar1:  +1.000  -0.009  +0.789  +0.934
                         :  myvar2:  -0.009  +1.000  -0.132  +0.071
                         :    var3:  +0.789  -0.132  +1.000  +0.845
                         :    var4:  +0.934  +0.071  +0.845  +1.000
                         : ----------------------------------------
DataSetFactory           : [dataset] :  
                         : 
                         : [NON-XML-CHAR-0x1B][1mTraining method BDT BDTB[NON-XML-CHAR-0x1B][0m
                         : Train method: BDTB for Classification
                         : 
BDTB                     : #events: (reweighted) sig: 1000 bkg: 1000
                         : #events: (unweighted) sig: 1000 bkg: 1000
                         : Training 100 Decision Trees ... patience please
1%, time left: unknown
8%, time left: 0 sec
14%, time left: 0 sec
20%, time left: 0 sec
26%, time left: 0 sec
33%, time left: 0 sec
39%, time left: 0 sec
45%, time left: 0 sec
51%, time left: 0 sec
58%, time left: 0 sec
64%, time left: 0 sec
70%, time left: 0 sec
76%, time left: 0 sec
83%, time left: 0 sec
89%, time left: 0 sec
95%, time left: 0 sec
                         : Elapsed time for training with 2000 events: 0.122 sec         
BDTB                     : [dataset] : Evaluation of BDTB on training sample (2000 events)
0%, time left: unknown
7%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
38%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
57%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
88%, time left: 0 sec
94%, time left: 0 sec
                         : Elapsed time for evaluation of 2000 events: 0.0088 sec       
                         : Creating xml weight file: [NON-XML-CHAR-0x1B][0;36mdataset/weights/Classification_BDTB.weights.xml[NON-XML-CHAR-0x1B][0m
                         : Creating standalone class: [NON-XML-CHAR-0x1B][0;36mdataset/weights/Classification_BDTB.class.C[NON-XML-CHAR-0x1B][0m
                         : Training finished
                         : 
                         : [NON-XML-CHAR-0x1B][1mTest all methods[NON-XML-CHAR-0x1B][0m
                         : Test method: BDTB for Classification performance
                         : 
BDTB                     : [dataset] : Evaluation of BDTB on testing sample (10000 events)
0%, time left: unknown
7%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
38%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
57%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
88%, time left: 0 sec
94%, time left: 0 sec
                         : Elapsed time for evaluation of 10000 events: 0.041 sec       
                         : Evaluate classifier: BDTB
                         : 
BDTB                     : [dataset] : Loop over test events and fill histograms with classifier response...
                         : 
                         : 
                         : Evaluation results ranked by best signal efficiency and purity (area)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet       MVA                       
                         : Name:         Method:          ROC-integ
                         : dataset       BDTB           : 0.855
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
                         : Testing efficiency compared to training efficiency (overtraining check)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet              MVA              Signal efficiency: from test sample (from training sample) 
                         : Name:                Method:          @B=0.01             @B=0.10            @B=0.30   
                         : -------------------------------------------------------------------------------------------------------------------
                         : dataset              BDTB           : 0.000 (0.000)       0.612 (0.641)      0.858 (0.869)
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
                         : Loading booked method: [NON-XML-CHAR-0x1B][1mBDT BDTG[NON-XML-CHAR-0x1B][0m
                         : 
                         : [NON-XML-CHAR-0x1B][1mTraining method BDT BDTG[NON-XML-CHAR-0x1B][0m
                         : Train method: BDTG for Classification
                         : 
BDTG                     : #events: (reweighted) sig: 1000 bkg: 1000
                         : #events: (unweighted) sig: 1000 bkg: 1000
                         : Training 100 Decision Trees ... patience please
1%, time left: unknown
8%, time left: 0 sec
14%, time left: 0 sec
20%, time left: 0 sec
26%, time left: 0 sec
33%, time left: 0 sec
39%, time left: 0 sec
45%, time left: 0 sec
51%, time left: 0 sec
58%, time left: 0 sec
64%, time left: 0 sec
70%, time left: 0 sec
76%, time left: 0 sec
83%, time left: 0 sec
89%, time left: 0 sec
95%, time left: 0 sec
                         : Elapsed time for training with 2000 events: 0.132 sec         
BDTG                     : [dataset] : Evaluation of BDTG on training sample (2000 events)
0%, time left: unknown
7%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
38%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
57%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
88%, time left: 0 sec
94%, time left: 0 sec
                         : Elapsed time for evaluation of 2000 events: 0.0115 sec       
                         : Creating xml weight file: [NON-XML-CHAR-0x1B][0;36mdataset/weights/Classification_BDTG.weights.xml[NON-XML-CHAR-0x1B][0m
                         : Creating standalone class: [NON-XML-CHAR-0x1B][0;36mdataset/weights/Classification_BDTG.class.C[NON-XML-CHAR-0x1B][0m
                         : Training finished
                         : 
                         : [NON-XML-CHAR-0x1B][1mTest all methods[NON-XML-CHAR-0x1B][0m
                         : Test method: BDTG for Classification performance
                         : 
BDTG                     : [dataset] : Evaluation of BDTG on testing sample (10000 events)
0%, time left: unknown
7%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
38%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
57%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
88%, time left: 0 sec
94%, time left: 0 sec
                         : Elapsed time for evaluation of 10000 events: 0.0545 sec       
                         : Evaluate classifier: BDTG
                         : 
BDTG                     : [dataset] : Loop over test events and fill histograms with classifier response...
                         : 
                         : 
                         : Evaluation results ranked by best signal efficiency and purity (area)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet       MVA                       
                         : Name:         Method:          ROC-integ
                         : dataset       BDTG           : 0.900
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
                         : Testing efficiency compared to training efficiency (overtraining check)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet              MVA              Signal efficiency: from test sample (from training sample) 
                         : Name:                Method:          @B=0.01             @B=0.10            @B=0.30   
                         : -------------------------------------------------------------------------------------------------------------------
                         : dataset              BDTG           : 0.250 (0.439)       0.708 (0.780)      0.906 (0.924)
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
[       OK ] ClassifierTest1.BasicTests (1518 ms)
[----------] 1 test from ClassifierTest1 (1518 ms total)

[----------] 1 test from ClassifierTest2
[ RUN      ] ClassifierTest2.TestsOverOutput
Info in <TFile::OpenFromCache>: using local cache copy of http://root.cern.ch/files/tmva_class_example.root [./files/tmva_class_example.root]
create data set info dataset
DataSetInfo              : [dataset] : Added class "Signal"
                         : Add Tree TreeS of type Signal with 6000 events
DataSetInfo              : [dataset] : Added class "Background"
                         : Add Tree TreeB of type Background with 6000 events
                         : Loading booked method: [NON-XML-CHAR-0x1B][1mBDT BDTB[NON-XML-CHAR-0x1B][0m
                         : 
                         : Building event vectors for type 2 Signal
                         : Dataset[dataset] :  create input formulas for tree TreeS
                         : Building event vectors for type 2 Background
                         : Dataset[dataset] :  create input formulas for tree TreeB
DataSetFactory           : [dataset] : Number of events in input trees
                         : 
                         : 
                         : Number of training and testing events
                         : ---------------------------------------------------------------------------
                         : Signal     -- training events            : 1000
                         : Signal     -- testing events             : 5000
                         : Signal     -- training and testing events: 6000
                         : Background -- training events            : 1000
                         : Background -- testing events             : 5000
                         : Background -- training and testing events: 6000
                         : 
DataSetInfo              : Correlation matrix (Signal):
                         : ----------------------------------------
                         :           myvar1  myvar2    var3    var4
                         :  myvar1:  +1.000  -0.034  +0.771  +0.930
                         :  myvar2:  -0.034  +1.000  -0.100  +0.046
                         :    var3:  +0.771  -0.100  +1.000  +0.856
                         :    var4:  +0.930  +0.046  +0.856  +1.000
                         : ----------------------------------------
DataSetInfo              : Correlation matrix (Background):
                         : ----------------------------------------
                         :           myvar1  myvar2    var3    var4
                         :  myvar1:  +1.000  -0.009  +0.789  +0.934
                         :  myvar2:  -0.009  +1.000  -0.132  +0.071
                         :    var3:  +0.789  -0.132  +1.000  +0.845
                         :    var4:  +0.934  +0.071  +0.845  +1.000
                         : ----------------------------------------
DataSetFactory           : [dataset] :  
                         : 
                         : [NON-XML-CHAR-0x1B][1mTraining method BDT BDTB[NON-XML-CHAR-0x1B][0m
                         : Train method: BDTB for Classification
                         : 
BDTB                     : #events: (reweighted) sig: 1000 bkg: 1000
                         : #events: (unweighted) sig: 1000 bkg: 1000
                         : Training 100 Decision Trees ... patience please
1%, time left: unknown
8%, time left: 0 sec
14%, time left: 0 sec
20%, time left: 0 sec
26%, time left: 0 sec
33%, time left: 0 sec
39%, time left: 0 sec
45%, time left: 0 sec
51%, time left: 0 sec
58%, time left: 0 sec
64%, time left: 0 sec
70%, time left: 0 sec
76%, time left: 0 sec
83%, time left: 0 sec
89%, time left: 0 sec
95%, time left: 0 sec
                         : Elapsed time for training with 2000 events: 0.12 sec         
BDTB                     : [dataset] : Evaluation of BDTB on training sample (2000 events)
0%, time left: unknown
7%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
38%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
57%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
88%, time left: 0 sec
94%, time left: 0 sec
                         : Elapsed time for evaluation of 2000 events: 0.00901 sec       
                         : Creating xml weight file: [NON-XML-CHAR-0x1B][0;36mdataset/weights/Classification_BDTB.weights.xml[NON-XML-CHAR-0x1B][0m
                         : Creating standalone class: [NON-XML-CHAR-0x1B][0;36mdataset/weights/Classification_BDTB.class.C[NON-XML-CHAR-0x1B][0m
                         : TMVAtmp1.root:/dataset/Method_BDT/BDTB
                         : Training finished
                         : 
                         : [NON-XML-CHAR-0x1B][1mTest all methods[NON-XML-CHAR-0x1B][0m
                         : Test method: BDTB for Classification performance
                         : 
BDTB                     : [dataset] : Evaluation of BDTB on testing sample (10000 events)
0%, time left: unknown
7%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
38%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
57%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
88%, time left: 0 sec
94%, time left: 0 sec
                         : Elapsed time for evaluation of 10000 events: 0.0423 sec       
                         : Evaluate classifier: BDTB
                         : 
BDTB                     : [dataset] : Loop over test events and fill histograms with classifier response...
                         : 
TFHandler_BDTB           : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :   myvar1:    0.21361     1.7137   [    -9.8605     7.9024 ]
                         :   myvar2:  -0.048525     1.1046   [    -4.0854     4.0259 ]
                         :     var3:    0.16565     1.0526   [    -5.3563     4.6430 ]
                         :     var4:    0.43428     1.2202   [    -6.9675     4.9600 ]
                         : -----------------------------------------------------------
                         : 
                         : Evaluation results ranked by best signal efficiency and purity (area)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet       MVA                       
                         : Name:         Method:          ROC-integ
                         : dataset       BDTB           : 0.855
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
                         : Testing efficiency compared to training efficiency (overtraining check)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet              MVA              Signal efficiency: from test sample (from training sample) 
                         : Name:                Method:          @B=0.01             @B=0.10            @B=0.30   
                         : -------------------------------------------------------------------------------------------------------------------
                         : dataset              BDTB           : 0.000 (0.000)       0.612 (0.641)      0.858 (0.869)
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
Dataset:dataset          : Created tree 'TestTree' with 10000 events
                         : 
Dataset:dataset          : Created tree 'TrainTree' with 2000 events
                         : 
[       OK ] ClassifierTest2.TestsOverOutput (869 ms)
[----------] 1 test from ClassifierTest2 (869 ms total)

[----------] Global test environment tear-down
[==========] 2 tests from 2 test cases ran. (2388 ms total)
[  PASSED  ] 2 tests.