Execution Time0.43s

Test: TMVA-DNN-RNN-FullRNN-Cpu (Passed)
Build: PR-4827-x86_64-fedora30-gcc9-opt (root-fedora30-1.cern.ch) on 2020-01-24 19:20:19

Test Timing: Passed
Processors1

Show Command Line
Display graphs:

Test output
Training RNN to identity firstCopying output into input
Error in <AddBasicRNNLayer>: Inconsistent time steps with input layout - it should be 1 instead of 1
iteration : 1  loss: 0.506547
iteration : 2  loss: 0.277503
iteration : 3  loss: 0.199527
iteration : 4  loss: 0.151695
iteration : 5  loss: 0.118826
iteration : 6  loss: 0.0957943
iteration : 7  loss: 0.0795271
iteration : 8  loss: 0.0679577
iteration : 9  loss: 0.0596634
iteration : 10  loss: 0.0536568
iteration : 11  loss: 0.0492505
iteration : 12  loss: 0.0459648
iteration : 13  loss: 0.0434653
iteration : 14  loss: 0.0415187
iteration : 15  loss: 0.0399622
iteration : 16  loss: 0.0386826
iteration : 17  loss: 0.0376007
iteration : 18  loss: 0.0366616
iteration : 19  loss: 0.0358267
iteration : 20  loss: 0.0350691
iteration : 21  loss: 0.03437
iteration : 22  loss: 0.0337161
iteration : 23  loss: 0.0330979
iteration : 24  loss: 0.0325089
iteration : 25  loss: 0.0319442
iteration : 26  loss: 0.0314002
iteration : 27  loss: 0.0308743
iteration : 28  loss: 0.0303647
iteration : 29  loss: 0.0298697
iteration : 30  loss: 0.0293881
iteration : 31  loss: 0.0289191
iteration : 32  loss: 0.0284618
iteration : 33  loss: 0.0280156
iteration : 34  loss: 0.0275798
iteration : 35  loss: 0.0271539
iteration : 36  loss: 0.0267375
iteration : 37  loss: 0.0263301
iteration : 38  loss: 0.0259313
iteration : 39  loss: 0.0255408
iteration : 40  loss: 0.0251583
iteration : 41  loss: 0.0247833
iteration : 42  loss: 0.0244157
iteration : 43  loss: 0.024055
iteration : 44  loss: 0.0237012
iteration : 45  loss: 0.0233538
iteration : 46  loss: 0.0230126
iteration : 47  loss: 0.0226775
iteration : 48  loss: 0.0223482
iteration : 49  loss: 0.0220244
iteration : 50  loss: 0.0217061
Error in <AddBasicRNNLayer>: Inconsistent time steps with input layout - it should be 5 instead of 5
Training RNN to simple time dependent data iter = 1 loss: 0.707981
iter = 2 loss: 0.676019
iter = 3 loss: 0.672194
iter = 4 loss: 0.669135
iter = 5 loss: 0.665662
iter = 6 loss: 0.66159
iter = 7 loss: 0.65658
iter = 8 loss: 0.649862
iter = 9 loss: 0.63932
iter = 10 loss: 0.619519
iter = 11 loss: 0.580808
iter = 12 loss: 0.526773
iter = 13 loss: 0.496848
iter = 14 loss: 0.476347
iter = 15 loss: 0.459404
iter = 16 loss: 0.444316
iter = 17 loss: 0.430205
iter = 18 loss: 0.416648
iter = 19 loss: 0.403457
iter = 20 loss: 0.390556
iter = 21 loss: 0.377926
iter = 22 loss: 0.365574
iter = 23 loss: 0.353525
iter = 24 loss: 0.341805
iter = 25 loss: 0.33044
iter = 26 loss: 0.319449
iter = 27 loss: 0.308846
iter = 28 loss: 0.298636
iter = 29 loss: 0.28882
iter = 30 loss: 0.279394
iter = 31 loss: 0.270355
iter = 32 loss: 0.261693
iter = 33 loss: 0.253403
iter = 34 loss: 0.245475
iter = 35 loss: 0.237901
iter = 36 loss: 0.230669
iter = 37 loss: 0.22377
iter = 38 loss: 0.21719
iter = 39 loss: 0.210915
iter = 40 loss: 0.204933
iter = 41 loss: 0.199227
iter = 42 loss: 0.193783
iter = 43 loss: 0.188585
iter = 44 loss: 0.183619
iter = 45 loss: 0.178871
iter = 46 loss: 0.174328
iter = 47 loss: 0.169976
iter = 48 loss: 0.165804
iter = 49 loss: 0.1618
iter = 50 loss: 0.157955

2x64 matrix is as follows

     |       0    |       1    |       2    |       3    |       4    |
----------------------------------------------------------------------
   0 |          1           1           0           1           0 
   1 |     0.9275      0.8436     0.05398      0.9235      0.2395 


     |       5    |       6    |       7    |       8    |       9    |
----------------------------------------------------------------------
   0 |          1           0           1           1           1 
   1 |     0.9231     0.08905      0.9283      0.9313      0.8973 


     |      10    |      11    |      12    |      13    |      14    |
----------------------------------------------------------------------
   0 |          1           1           0           1           1 
   1 |     0.8307      0.8248     0.06061      0.8507      0.9277 


     |      15    |      16    |      17    |      18    |      19    |
----------------------------------------------------------------------
   0 |          1           0           1           0           0 
   1 |     0.9324      0.6782      0.9265      0.1851     0.08503 


     |      20    |      21    |      22    |      23    |      24    |
----------------------------------------------------------------------
   0 |          1           0           0           0           1 
   1 |     0.7954     0.04534     0.08858      0.1593      0.9327 


     |      25    |      26    |      27    |      28    |      29    |
----------------------------------------------------------------------
   0 |          1           1           0           0           1 
   1 |     0.9247      0.9308     0.09717      0.1269       0.937 


     |      30    |      31    |      32    |      33    |      34    |
----------------------------------------------------------------------
   0 |          1           0           0           0           0 
   1 |      0.783     0.06219      0.1026      0.1911      0.1189 


     |      35    |      36    |      37    |      38    |      39    |
----------------------------------------------------------------------
   0 |          1           0           0           1           0 
   1 |     0.9052      0.1852      0.2238      0.9336     0.06633 


     |      40    |      41    |      42    |      43    |      44    |
----------------------------------------------------------------------
   0 |          0           1           1           1           1 
   1 |      0.242      0.8895      0.9305      0.9314      0.9249 


     |      45    |      46    |      47    |      48    |      49    |
----------------------------------------------------------------------
   0 |          1           0           0           1           0 
   1 |     0.7745      0.2801     0.08563      0.8059      0.1331 


     |      50    |      51    |      52    |      53    |      54    |
----------------------------------------------------------------------
   0 |          0           0           1           1           0 
   1 |      0.073      0.2226      0.4175      0.9205     0.06936 


     |      55    |      56    |      57    |      58    |      59    |
----------------------------------------------------------------------
   0 |          1           1           0           1           0 
   1 |     0.9029      0.8931       0.121      0.8802      0.1111 


     |      60    |      61    |      62    |      63    |
----------------------------------------------------------------------
   0 |          0           1           1           1 
   1 |     0.1743      0.8871      0.9381      0.9452 

ROC integral is 0.453247
Test full RNN passed : Efficiencies are 0.0344828 and 0.971429