Execution Time22.38s

Test: tutorial-tmva-TMVAMultipleBackgroundExample (Passed)
Build: PR-4624-x86_64-ubuntu16-gcc54-opt (sft-ubuntu-1604-4) on 2019-11-14 19:02:07
Repository revision: ee743e1638624a8a6fed6adde874e58bb5acc139

Test Timing: Passed
Processors1

Show Command Line
Display graphs:

Test output
Processing /mnt/build/workspace/root-pullrequests-build/root/tutorials/tmva/TMVAMultipleBackgroundExample.C...
Start Test TMVAGAexample
========================

... event: 0 (200)
======> EVENT:0
 var1            = -1.14361
 var2            = -0.822373
 var3            = -0.395426
 var4            = -0.529427
created tree: TreeS
... event: 0 (200)
======> EVENT:0
 var1            = -1.54361
 var2            = -1.42237
 var3            = -1.39543
 var4            = -2.02943
created tree: TreeB0
... event: 0 (200)
======> EVENT:0
 var1            = -1.54361
 var2            = -0.822373
 var3            = -0.395426
 var4            = -2.02943
created tree: TreeB1
======> EVENT:0
 var1            = 0.463304
 var2            = 1.37192
 var3            = -1.16769
 var4            = -1.77551
created tree: TreeB2
created data file: tmva_example_multiple_background.root

========================
--- Training
create data set info datasetBkg0
<HEADER> DataSetInfo              : [datasetBkg0] : Added class "Signal"
                         : Add Tree TreeS of type Signal with 200 events
<HEADER> DataSetInfo              : [datasetBkg0] : Added class "Background"
                         : Add Tree TreeB0 of type Background with 200 events
<HEADER> Factory                  : Booking method: BDTG
                         : 
                         : the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
                         : --> change to new default NegWeightTreatment=Pray
                         : Building event vectors for type 2 Signal
                         : Dataset[datasetBkg0] :  create input formulas for tree TreeS
                         : Building event vectors for type 2 Background
                         : Dataset[datasetBkg0] :  create input formulas for tree TreeB0
<HEADER> DataSetFactory           : [datasetBkg0] : Number of events in input trees
                         : 
                         : 
                         : Number of training and testing events
                         : ---------------------------------------------------------------------------
                         : Signal     -- training events            : 100
                         : Signal     -- testing events             : 100
                         : Signal     -- training and testing events: 200
                         : Background -- training events            : 100
                         : Background -- testing events             : 100
                         : Background -- training and testing events: 200
                         : 
<HEADER> DataSetInfo              : Correlation matrix (Signal):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  +0.485  +0.637  +0.878
                         :    var2:  +0.485  +1.000  +0.752  +0.759
                         :    var3:  +0.637  +0.752  +1.000  +0.840
                         :    var4:  +0.878  +0.759  +0.840  +1.000
                         : ----------------------------------------
<HEADER> DataSetInfo              : Correlation matrix (Background):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  +0.377  +0.577  +0.847
                         :    var2:  +0.377  +1.000  +0.745  +0.722
                         :    var3:  +0.577  +0.745  +1.000  +0.811
                         :    var4:  +0.847  +0.722  +0.811  +1.000
                         : ----------------------------------------
<HEADER> DataSetFactory           : [datasetBkg0] :  
                         : 
<HEADER> Factory                  : Train all methods
<HEADER> Factory                  : [datasetBkg0] : Create Transformation "I" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory                  : [datasetBkg0] : Create Transformation "D" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory                  : [datasetBkg0] : Create Transformation "P" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory                  : [datasetBkg0] : Create Transformation "G" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory                  : [datasetBkg0] : Create Transformation "D" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.066427     1.0417   [    -3.1150     2.9998 ]
                         :     var2:   0.074159     1.0451   [    -3.4854     3.1113 ]
                         :     var3:    0.11230     1.1191   [    -3.0033     3.9796 ]
                         :     var4:    0.25340     1.3586   [    -3.2294     4.1179 ]
                         : -----------------------------------------------------------
                         : Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:  -0.089897     1.0000   [    -2.8690     2.6768 ]
                         :     var2:  -0.048622     1.0000   [    -3.1024     2.5656 ]
                         :     var3:  -0.019979     1.0000   [    -2.8162     3.4529 ]
                         :     var4:    0.31232     1.0000   [    -1.8094     2.4786 ]
                         : -----------------------------------------------------------
                         : Preparing the Principle Component (PCA) transformation...
<HEADER> TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:-1.4540e-09     2.0807   [    -5.7703     6.1568 ]
                         :     var2: 4.0047e-10    0.78255   [    -2.1728     2.0976 ]
                         :     var3:-4.5751e-10    0.47194   [    -1.3320     1.1953 ]
                         :     var4:-5.3842e-10    0.33329   [   -0.78875    0.87706 ]
                         : -----------------------------------------------------------
                         : Preparing the Gaussian transformation...
                         : Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:    0.15835     1.0000   [    -1.3229     6.2791 ]
                         :     var2:    0.12263     1.0000   [    -2.5143     6.0808 ]
                         :     var3:    0.14347     1.0000   [    -1.7961     6.9066 ]
                         :     var4:   0.048926     1.0000   [    -2.5286     6.0560 ]
                         : -----------------------------------------------------------
                         : Ranking input variables (method unspecific)...
<HEADER> IdTransformation         : Ranking result (top variable is best ranked)
                         : -----------------------------------
                         : Rank : Variable   : Separation
                         : -----------------------------------
                         :    1 : Variable 4 : 4.424e-01
                         :    2 : Variable 3 : 3.801e-01
                         :    3 : Variable 2 : 2.435e-01
                         :    4 : Variable 1 : 1.922e-01
                         : -----------------------------------
<HEADER> Factory                  : Train method: BDTG for Classification
                         : 
<HEADER> BDTG                     : #events: (reweighted) sig: 100 bkg: 100
                         : #events: (unweighted) sig: 100 bkg: 100
                         : Training 1000 Decision Trees ... patience please
0%, time left: unknown
6%, time left: 0 sec
12%, time left: 0 sec
18%, time left: 0 sec
25%, time left: 0 sec
31%, time left: 0 sec
37%, time left: 0 sec
43%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
62%, time left: 0 sec
68%, time left: 0 sec
75%, time left: 0 sec
81%, time left: 0 sec
87%, time left: 0 sec
93%, time left: 0 sec
                         : Elapsed time for training with 200 events: 0.114 sec         
<HEADER> BDTG                     : [datasetBkg0] : Evaluation of BDTG on training sample (200 events)
0%, time left: unknown
7%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
38%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
57%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
88%, time left: 0 sec
94%, time left: 0 sec
                         : Elapsed time for evaluation of 200 events: 0.0134 sec       
                         : Creating xml weight file: datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml
                         : Creating standalone class: datasetBkg0/weights/TMVAMultiBkg0_BDTG.class.C
<HEADER> Factory                  : Training finished
                         : 
                         : Ranking input variables (method specific)...
<HEADER> BDTG                     : Ranking result (top variable is best ranked)
                         : --------------------------------------
                         : Rank : Variable  : Variable Importance
                         : --------------------------------------
                         :    1 : var1      : 2.838e-01
                         :    2 : var2      : 2.537e-01
                         :    3 : var4      : 2.384e-01
                         :    4 : var3      : 2.240e-01
                         : --------------------------------------
<HEADER> Factory                  : === Destroy and recreate all methods via weight files for testing ===
                         : 
                         : Reading weight file: datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml
<HEADER> Factory                  : Test all methods
<HEADER> Factory                  : Test method: BDTG for Classification performance
                         : 
<HEADER> BDTG                     : [datasetBkg0] : Evaluation of BDTG on testing sample (200 events)
0%, time left: unknown
7%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
38%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
57%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
88%, time left: 0 sec
94%, time left: 0 sec
                         : Elapsed time for evaluation of 200 events: 0.00925 sec       
<HEADER> Factory                  : Evaluate all methods
<HEADER> Factory                  : Evaluate classifier: BDTG
                         : 
<HEADER> BDTG                     : [datasetBkg0] : Loop over test events and fill histograms with classifier response...
                         : 
<HEADER> TFHandler_BDTG           : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.072229    0.95447   [    -2.7150     2.2789 ]
                         :     var2:   0.026802    0.96431   [    -3.6952     2.5113 ]
                         :     var3:    0.14087     1.0567   [    -3.3587     3.3281 ]
                         :     var4:    0.27038     1.2168   [    -3.7913     3.5074 ]
                         : -----------------------------------------------------------
                         : 
                         : Evaluation results ranked by best signal efficiency and purity (area)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet       MVA                       
                         : Name:         Method:          ROC-integ
                         : datasetBkg0   BDTG           : 0.953
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
                         : Testing efficiency compared to training efficiency (overtraining check)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet              MVA              Signal efficiency: from test sample (from training sample) 
                         : Name:                Method:          @B=0.01             @B=0.10            @B=0.30   
                         : -------------------------------------------------------------------------------------------------------------------
                         : datasetBkg0          BDTG           : 0.000 (0.985)       0.905 (0.987)      0.976 (0.991)
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
<HEADER> Dataset:datasetBkg0      : Created tree 'TestTree' with 200 events
                         : 
<HEADER> Dataset:datasetBkg0      : Created tree 'TrainTree' with 200 events
                         : 
<HEADER> Factory                  : Thank you for using TMVA!
                         : For citation information, please visit: http://tmva.sf.net/citeTMVA.html
create data set info datasetBkg1
<HEADER> DataSetInfo              : [datasetBkg1] : Added class "Signal"
                         : Add Tree TreeS of type Signal with 200 events
<HEADER> DataSetInfo              : [datasetBkg1] : Added class "Background"
                         : Add Tree TreeB1 of type Background with 200 events
<HEADER> Factory                  : Booking method: BDTG
                         : 
                         : the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
                         : --> change to new default NegWeightTreatment=Pray
                         : Building event vectors for type 2 Signal
                         : Dataset[datasetBkg1] :  create input formulas for tree TreeS
                         : Building event vectors for type 2 Background
                         : Dataset[datasetBkg1] :  create input formulas for tree TreeB1
<HEADER> DataSetFactory           : [datasetBkg1] : Number of events in input trees
                         : 
                         : 
                         : Number of training and testing events
                         : ---------------------------------------------------------------------------
                         : Signal     -- training events            : 100
                         : Signal     -- testing events             : 100
                         : Signal     -- training and testing events: 200
                         : Background -- training events            : 100
                         : Background -- testing events             : 100
                         : Background -- training and testing events: 200
                         : 
<HEADER> DataSetInfo              : Correlation matrix (Signal):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  +0.485  +0.637  +0.878
                         :    var2:  +0.485  +1.000  +0.752  +0.759
                         :    var3:  +0.637  +0.752  +1.000  +0.840
                         :    var4:  +0.878  +0.759  +0.840  +1.000
                         : ----------------------------------------
<HEADER> DataSetInfo              : Correlation matrix (Background):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  +0.377  +0.577  +0.847
                         :    var2:  +0.377  +1.000  +0.745  +0.722
                         :    var3:  +0.577  +0.745  +1.000  +0.811
                         :    var4:  +0.847  +0.722  +0.811  +1.000
                         : ----------------------------------------
<HEADER> DataSetFactory           : [datasetBkg1] :  
                         : 
<HEADER> Factory                  : Train all methods
<HEADER> Factory                  : [datasetBkg1] : Create Transformation "I" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory                  : [datasetBkg1] : Create Transformation "D" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory                  : [datasetBkg1] : Create Transformation "P" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory                  : [datasetBkg1] : Create Transformation "G" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory                  : [datasetBkg1] : Create Transformation "D" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.066427     1.0417   [    -3.1150     2.9998 ]
                         :     var2:    0.37416    0.97541   [    -3.0952     3.1113 ]
                         :     var3:    0.61230    0.96750   [    -2.3587     3.9796 ]
                         :     var4:    0.25340     1.3586   [    -3.2294     4.1179 ]
                         : -----------------------------------------------------------
                         : Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   -0.15565     1.0000   [    -2.9801     2.6746 ]
                         :     var2:    0.15984     1.0000   [    -2.9641     2.4763 ]
                         :     var3:    0.73277     1.0000   [    -1.9228     4.1869 ]
                         :     var4:   0.020567     1.0000   [    -2.0336     2.3391 ]
                         : -----------------------------------------------------------
                         : Preparing the Principle Component (PCA) transformation...
<HEADER> TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:-9.2201e-10     1.9235   [    -5.3639     5.7144 ]
                         :     var2: 1.3318e-09    0.81666   [    -2.6634     2.0151 ]
                         :     var3:-1.1642e-10    0.52391   [    -1.7345     1.3129 ]
                         :     var4:-6.6590e-10    0.42084   [   -0.86901     1.1757 ]
                         : -----------------------------------------------------------
                         : Preparing the Gaussian transformation...
                         : Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:    0.14994     1.0000   [    -1.2992     6.2304 ]
                         :     var2:    0.14446     1.0000   [    -2.1183     5.6897 ]
                         :     var3:   0.091479     1.0000   [    -1.8403     6.2664 ]
                         :     var4:   0.092468     1.0000   [    -2.1129     5.4495 ]
                         : -----------------------------------------------------------
                         : Ranking input variables (method unspecific)...
<HEADER> IdTransformation         : Ranking result (top variable is best ranked)
                         : -----------------------------------
                         : Rank : Variable   : Separation
                         : -----------------------------------
                         :    1 : Variable 4 : 4.424e-01
                         :    2 : Variable 1 : 1.922e-01
                         :    3 : Variable 2 : 1.264e-01
                         :    4 : Variable 3 : 7.836e-02
                         : -----------------------------------
<HEADER> Factory                  : Train method: BDTG for Classification
                         : 
<HEADER> BDTG                     : #events: (reweighted) sig: 100 bkg: 100
                         : #events: (unweighted) sig: 100 bkg: 100
                         : Training 1000 Decision Trees ... patience please
0%, time left: unknown
6%, time left: 0 sec
12%, time left: 0 sec
18%, time left: 0 sec
25%, time left: 0 sec
31%, time left: 0 sec
37%, time left: 0 sec
43%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
62%, time left: 0 sec
68%, time left: 0 sec
75%, time left: 0 sec
81%, time left: 0 sec
87%, time left: 0 sec
93%, time left: 0 sec
                         : Elapsed time for training with 200 events: 0.111 sec         
<HEADER> BDTG                     : [datasetBkg1] : Evaluation of BDTG on training sample (200 events)
0%, time left: unknown
7%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
38%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
57%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
88%, time left: 0 sec
94%, time left: 0 sec
                         : Elapsed time for evaluation of 200 events: 0.0133 sec       
                         : Creating xml weight file: datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml
                         : Creating standalone class: datasetBkg1/weights/TMVAMultiBkg1_BDTG.class.C
<HEADER> Factory                  : Training finished
                         : 
                         : Ranking input variables (method specific)...
<HEADER> BDTG                     : Ranking result (top variable is best ranked)
                         : --------------------------------------
                         : Rank : Variable  : Variable Importance
                         : --------------------------------------
                         :    1 : var1      : 2.933e-01
                         :    2 : var4      : 2.742e-01
                         :    3 : var2      : 2.180e-01
                         :    4 : var3      : 2.146e-01
                         : --------------------------------------
<HEADER> Factory                  : === Destroy and recreate all methods via weight files for testing ===
                         : 
                         : Reading weight file: datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml
<HEADER> Factory                  : Test all methods
<HEADER> Factory                  : Test method: BDTG for Classification performance
                         : 
<HEADER> BDTG                     : [datasetBkg1] : Evaluation of BDTG on testing sample (200 events)
0%, time left: unknown
7%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
38%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
57%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
88%, time left: 0 sec
94%, time left: 0 sec
                         : Elapsed time for evaluation of 200 events: 0.00906 sec       
<HEADER> Factory                  : Evaluate all methods
<HEADER> Factory                  : Evaluate classifier: BDTG
                         : 
<HEADER> BDTG                     : [datasetBkg1] : Loop over test events and fill histograms with classifier response...
                         : 
<HEADER> TFHandler_BDTG           : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:   0.072229    0.95447   [    -2.7150     2.2789 ]
                         :     var2:    0.32680    0.94378   [    -3.0952     3.1113 ]
                         :     var3:    0.64087    0.96582   [    -2.3587     3.9796 ]
                         :     var4:    0.27038     1.2168   [    -3.7913     3.5074 ]
                         : -----------------------------------------------------------
                         : 
                         : Evaluation results ranked by best signal efficiency and purity (area)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet       MVA                       
                         : Name:         Method:          ROC-integ
                         : datasetBkg1   BDTG           : 0.989
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
                         : Testing efficiency compared to training efficiency (overtraining check)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet              MVA              Signal efficiency: from test sample (from training sample) 
                         : Name:                Method:          @B=0.01             @B=0.10            @B=0.30   
                         : -------------------------------------------------------------------------------------------------------------------
                         : datasetBkg1          BDTG           : 0.000 (1.000)       1.000 (1.000)      1.000 (1.000)
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
<HEADER> Dataset:datasetBkg1      : Created tree 'TestTree' with 200 events
                         : 
<HEADER> Dataset:datasetBkg1      : Created tree 'TrainTree' with 200 events
                         : 
<HEADER> Factory                  : Thank you for using TMVA!
                         : For citation information, please visit: http://tmva.sf.net/citeTMVA.html
create data set info datasetBkg2
<HEADER> DataSetInfo              : [datasetBkg2] : Added class "Signal"
                         : Add Tree TreeS of type Signal with 200 events
<HEADER> DataSetInfo              : [datasetBkg2] : Added class "Background"
                         : Add Tree TreeB2 of type Background with 200 events
<HEADER> Factory                  : Booking method: BDTG
                         : 
                         : the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
                         : --> change to new default NegWeightTreatment=Pray
                         : Building event vectors for type 2 Signal
                         : Dataset[datasetBkg2] :  create input formulas for tree TreeS
                         : Building event vectors for type 2 Background
                         : Dataset[datasetBkg2] :  create input formulas for tree TreeB2
<HEADER> DataSetFactory           : [datasetBkg2] : Number of events in input trees
                         : 
                         : 
                         : Number of training and testing events
                         : ---------------------------------------------------------------------------
                         : Signal     -- training events            : 100
                         : Signal     -- testing events             : 100
                         : Signal     -- training and testing events: 200
                         : Background -- training events            : 100
                         : Background -- testing events             : 100
                         : Background -- training and testing events: 200
                         : 
<HEADER> DataSetInfo              : Correlation matrix (Signal):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  +0.485  +0.637  +0.878
                         :    var2:  +0.485  +1.000  +0.752  +0.759
                         :    var3:  +0.637  +0.752  +1.000  +0.840
                         :    var4:  +0.878  +0.759  +0.840  +1.000
                         : ----------------------------------------
<HEADER> DataSetInfo              : Correlation matrix (Background):
                         : ----------------------------------------
                         :             var1    var2    var3    var4
                         :    var1:  +1.000  -0.656  -0.044  +0.068
                         :    var2:  -0.656  +1.000  -0.013  -0.139
                         :    var3:  -0.044  -0.013  +1.000  +0.110
                         :    var4:  +0.068  -0.139  +0.110  +1.000
                         : ----------------------------------------
<HEADER> DataSetFactory           : [datasetBkg2] :  
                         : 
<HEADER> Factory                  : Train all methods
<HEADER> Factory                  : [datasetBkg2] : Create Transformation "I" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory                  : [datasetBkg2] : Create Transformation "D" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory                  : [datasetBkg2] : Create Transformation "P" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory                  : [datasetBkg2] : Create Transformation "G" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory                  : [datasetBkg2] : Create Transformation "D" with events from all classes.
                         : 
<HEADER>                          : Transformation, Variable selection : 
                         : Input : variable 'var1' <---> Output : variable 'var1'
                         : Input : variable 'var2' <---> Output : variable 'var2'
                         : Input : variable 'var3' <---> Output : variable 'var3'
                         : Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:    0.35135    0.91590   [    -2.1665     2.9998 ]
                         :     var2:    0.72107    0.88032   [    -3.0952     3.1113 ]
                         :     var3:    0.29319     1.1286   [    -2.3587     3.9796 ]
                         :     var4:    0.65463     1.1780   [    -2.2913     4.1179 ]
                         : -----------------------------------------------------------
                         : Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:    0.25774     1.0000   [    -2.0792     2.7730 ]
                         :     var2:    0.77022     1.0000   [    -3.2294     3.1618 ]
                         :     var3:   0.024586     1.0000   [    -2.2489     2.6129 ]
                         :     var4:    0.45801     1.0000   [    -2.3000     2.5395 ]
                         : -----------------------------------------------------------
                         : Preparing the Principle Component (PCA) transformation...
<HEADER> TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1: 9.5926e-10     1.5373   [    -5.3473     5.5326 ]
                         :     var2: 8.9407e-10    0.88855   [    -2.2471     2.6430 ]
                         :     var3:-2.9337e-10    0.79188   [    -2.3380     1.9125 ]
                         :     var4: 4.9826e-10    0.70386   [    -1.5948     2.1465 ]
                         : -----------------------------------------------------------
                         : Preparing the Gaussian transformation...
                         : Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory        : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:    0.15141     1.0000   [    -1.6172     5.6829 ]
                         :     var2:    0.17168     1.0000   [    -1.5359     5.4248 ]
                         :     var3:    0.14179     1.0000   [    -1.8210     5.3102 ]
                         :     var4:    0.10065     1.0000   [    -2.3131     4.5774 ]
                         : -----------------------------------------------------------
                         : Ranking input variables (method unspecific)...
<HEADER> IdTransformation         : Ranking result (top variable is best ranked)
                         : -----------------------------------
                         : Rank : Variable   : Separation
                         : -----------------------------------
                         :    1 : Variable 2 : 3.627e-01
                         :    2 : Variable 4 : 3.197e-01
                         :    3 : Variable 3 : 2.418e-01
                         :    4 : Variable 1 : 1.907e-01
                         : -----------------------------------
<HEADER> Factory                  : Train method: BDTG for Classification
                         : 
<HEADER> BDTG                     : #events: (reweighted) sig: 100 bkg: 100
                         : #events: (unweighted) sig: 100 bkg: 100
                         : Training 1000 Decision Trees ... patience please
0%, time left: unknown
6%, time left: 0 sec
12%, time left: 0 sec
18%, time left: 0 sec
25%, time left: 0 sec
31%, time left: 0 sec
37%, time left: 0 sec
43%, time left: 0 sec
50%, time left: 0 sec
56%, time left: 0 sec
62%, time left: 0 sec
68%, time left: 0 sec
75%, time left: 0 sec
81%, time left: 0 sec
87%, time left: 0 sec
93%, time left: 0 sec
                         : Elapsed time for training with 200 events: 0.112 sec         
<HEADER> BDTG                     : [datasetBkg2] : Evaluation of BDTG on training sample (200 events)
0%, time left: unknown
7%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
38%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
57%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
88%, time left: 0 sec
94%, time left: 0 sec
                         : Elapsed time for evaluation of 200 events: 0.0126 sec       
                         : Creating xml weight file: datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml
                         : Creating standalone class: datasetBkg2/weights/TMVAMultiBkg2_BDTG.class.C
<HEADER> Factory                  : Training finished
                         : 
                         : Ranking input variables (method specific)...
<HEADER> BDTG                     : Ranking result (top variable is best ranked)
                         : --------------------------------------
                         : Rank : Variable  : Variable Importance
                         : --------------------------------------
                         :    1 : var2      : 2.722e-01
                         :    2 : var1      : 2.666e-01
                         :    3 : var3      : 2.432e-01
                         :    4 : var4      : 2.180e-01
                         : --------------------------------------
<HEADER> Factory                  : === Destroy and recreate all methods via weight files for testing ===
                         : 
                         : Reading weight file: datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml
<HEADER> Factory                  : Test all methods
<HEADER> Factory                  : Test method: BDTG for Classification performance
                         : 
<HEADER> BDTG                     : [datasetBkg2] : Evaluation of BDTG on testing sample (200 events)
0%, time left: unknown
7%, time left: 0 sec
13%, time left: 0 sec
19%, time left: 0 sec
25%, time left: 0 sec
32%, time left: 0 sec
38%, time left: 0 sec
44%, time left: 0 sec
50%, time left: 0 sec
57%, time left: 0 sec
63%, time left: 0 sec
69%, time left: 0 sec
75%, time left: 0 sec
82%, time left: 0 sec
88%, time left: 0 sec
94%, time left: 0 sec
                         : Elapsed time for evaluation of 200 events: 0.00938 sec       
<HEADER> Factory                  : Evaluate all methods
<HEADER> Factory                  : Evaluate classifier: BDTG
                         : 
<HEADER> BDTG                     : [datasetBkg2] : Loop over test events and fill histograms with classifier response...
                         : 
<HEADER> TFHandler_BDTG           : Variable        Mean        RMS   [        Min        Max ]
                         : -----------------------------------------------------------
                         :     var1:    0.26457    0.87243   [    -2.7150     2.2789 ]
                         :     var2:    0.63463    0.90997   [    -2.8854     2.3222 ]
                         :     var3:    0.29991     1.0505   [    -2.0033     3.3281 ]
                         :     var4:    0.49000     1.1314   [    -1.8141     3.5074 ]
                         : -----------------------------------------------------------
                         : 
                         : Evaluation results ranked by best signal efficiency and purity (area)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet       MVA                       
                         : Name:         Method:          ROC-integ
                         : datasetBkg2   BDTG           : 0.961
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
                         : Testing efficiency compared to training efficiency (overtraining check)
                         : -------------------------------------------------------------------------------------------------------------------
                         : DataSet              MVA              Signal efficiency: from test sample (from training sample) 
                         : Name:                Method:          @B=0.01             @B=0.10            @B=0.30   
                         : -------------------------------------------------------------------------------------------------------------------
                         : datasetBkg2          BDTG           : 0.000 (0.936)       0.898 (0.946)      0.950 (0.958)
                         : -------------------------------------------------------------------------------------------------------------------
                         : 
<HEADER> Dataset:datasetBkg2      : Created tree 'TestTree' with 200 events
                         : 
<HEADER> Dataset:datasetBkg2      : Created tree 'TrainTree' with 200 events
                         : 
<HEADER> Factory                  : Thank you for using TMVA!
                         : For citation information, please visit: http://tmva.sf.net/citeTMVA.html

========================
--- Application & create combined tree
create data set info Default
create data set info Default
create data set info Default
                         : Booking "BDT method" of type "BDT" from datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml.
                         : Reading weight file: datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml
<HEADER> DataSetInfo              : [Default] : Added class "Signal"
<HEADER> DataSetInfo              : [Default] : Added class "Background"
                         : Booked classifier "BDTG" of type: "BDT"
                         : Booking "BDT method" of type "BDT" from datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml.
                         : Reading weight file: datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml
<HEADER> DataSetInfo              : [Default] : Added class "Signal"
<HEADER> DataSetInfo              : [Default] : Added class "Background"
                         : Booked classifier "BDTG" of type: "BDT"
                         : Booking "BDT method" of type "BDT" from datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml.
                         : Reading weight file: datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml
<HEADER> DataSetInfo              : [Default] : Added class "Signal"
<HEADER> DataSetInfo              : [Default] : Added class "Background"
                         : Booked classifier "BDTG" of type: "BDT"
--- Select signal sample
--- Processing: 200 events
--- ... Processing event: 0
--- End of event loop: Real time 0:00:00, CP time 0.020
--- Select background 0 sample
--- Processing: 200 events
--- ... Processing event: 0
--- End of event loop: Real time 0:00:00, CP time 0.030
--- Select background 1 sample
--- Processing: 200 events
--- ... Processing event: 0
--- End of event loop: Real time 0:00:00, CP time 0.030
--- Select background 2 sample
--- Processing: 200 events
--- ... Processing event: 0
--- End of event loop: Real time 0:00:00, CP time 0.030
--- Created root file: "tmva_example_multiple_backgrounds__applied.root" containing the MVA output histograms
==> Application of readers is done! combined tree created


========================
--- maximize significance
Classifier ranges (defined by the user)
 range: -1   1
 range: -1   1
 range: -1   1
<HEADER> FitterBase               : <GeneticFitter> Optimisation, please be patient ... (inaccurate progress timing for GA)
0%, time left: unknown
7%, time left: 17 sec
13%, time left: 11 sec
20%, time left: 15 sec
25%, time left: 12 sec
32%, time left: 15 sec
38%, time left: 13 sec
44%, time left: 11 sec
50%, time left: 9 sec
57%, time left: 8 sec
63%, time left: 8 sec
70%, time left: 6 sec
75%, time left: 5 sec
82%, time left: 3 sec
88%, time left: 2 sec
94%, time left: 1 sec
                         : Elapsed time: 17.9 sec                            

======================
Efficiency : 0.93
Purity     : 0.907317

True positive weights : 186
False positive weights: 19
Signal weights        : 200

  cutValue[0] = 0.718258;
  cutValue[1] = -0.997876;
  cutValue[2] = -0.999939;