Execution Time1.36s

Test: tutorial-roofit-rf901_numintconfig-py (Passed)
Build: master-x86_64-ubuntu19-gcc8 (root-ubuntu1904-1) on 2019-11-14 01:35:19
Repository revision: 32b17abcda23e44b64218a42d0ca69cb30cda7e0

Test Timing: Passed
Processors1

Show Command Line
Display graphs:

Test output
[NON-XML-CHAR-0x1B][1mRooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby[NON-XML-CHAR-0x1B][0m 
                Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
                All rights reserved, please read http://roofit.sourceforge.net/license.txt

Requested precision: 1e-07 absolute, 1e-07 relative

1-D integration method: RooIntegrator1D (RooImproperIntegrator1D if open-ended)
2-D integration method: RooAdaptiveIntegratorND (N/A if open-ended)
N-D integration method: RooAdaptiveIntegratorND (N/A if open-ended)

Available integration methods:

*** RooBinIntegrator ***
Capabilities: [1-D] [2-D] [N-D] 
Configuration: 
  1)  numBins = 100

*** RooIntegrator1D ***
Capabilities: [1-D] 
Configuration: 
  1)        sumRule = Trapezoid(idx = 0)

  2)  extrapolation = Wynn-Epsilon(idx = 1)

  3)       maxSteps = 20
  4)       minSteps = 999
  5)       fixSteps = 0

*** RooIntegrator2D ***
Capabilities: [2-D] 
Configuration: 
(Depends on 'RooIntegrator1D')

*** RooSegmentedIntegrator1D ***
Capabilities: [1-D] 
Configuration: 
  1)  numSeg = 3
(Depends on 'RooIntegrator1D')

*** RooSegmentedIntegrator2D ***
Capabilities: [2-D] 
Configuration: 
(Depends on 'RooSegmentedIntegrator1D')

*** RooImproperIntegrator1D ***
Capabilities: [1-D] [OpenEnded] 
Configuration: 
(Depends on 'RooIntegrator1D')

*** RooMCIntegrator ***
Capabilities: [1-D] [2-D] [N-D] 
Configuration: 
  1)   samplingMode = Importance(idx = 0)

  2)        genType = QuasiRandom(idx = 0)

  3)        verbose = false(idx = 0)

  4)          alpha = 1.5
  5)    nRefineIter = 5
  6)  nRefinePerDim = 1000
  7)     nIntPerDim = 5000

*** RooAdaptiveGaussKronrodIntegrator1D ***
Capabilities: [1-D] [OpenEnded] 
Configuration: 
  1)  maxSeg = 100
  2)  method = 21Points(idx = 2)


*** RooGaussKronrodIntegrator1D ***
Capabilities: [1-D] [OpenEnded] 
Configuration: 

*** RooAdaptiveIntegratorND ***
Capabilities: [2-D] [N-D] 
Configuration: 
  1)  maxEval2D = 100000
  2)  maxEval3D = 1e+06
  3)  maxEvalND = 1e+07
  4)    maxWarn = 5

[#2] INFO:Integration -- RooRealIntegral::ctor(landau_Int[x]) Constructing integral of function landau over observables(x) with normalization () with range identifier <none>
[#2] DEBUG:Integration -- landau: Adding observable x of server x as shape dependent
[#2] INFO:Integration -- landau: Observable x is suitable for analytical integration (if supported by p.d.f)
[#2] INFO:Integration -- landau: Observables (x) are numerically integrated
[#1] INFO:NumericIntegration -- RooRealIntegral::init(landau_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x)
 [1] int_dx landau(x) =  0.0989653362054
[#2] INFO:Integration -- RooRealIntegral::ctor(landau_Int[x]) Constructing integral of function landau over observables(x) with normalization () with range identifier <none>
[#2] DEBUG:Integration -- landau: Adding observable x of server x as shape dependent
[#2] INFO:Integration -- landau: Observable x is suitable for analytical integration (if supported by p.d.f)
[#2] INFO:Integration -- landau: Observables (x) are numerically integrated
[#1] INFO:NumericIntegration -- RooRealIntegral::init(landau_Int[x]) using numeric integrator RooAdaptiveGaussKronrodIntegrator1D to calculate Int(x)
 [2] int_dx landau(x) =  0.0989571029219
[#2] INFO:Integration -- RooRealIntegral::ctor(landau_Int[x]) Constructing integral of function landau over observables(x) with normalization () with range identifier <none>
[#2] DEBUG:Integration -- landau: Adding observable x of server x as shape dependent
[#2] INFO:Integration -- landau: Observable x is suitable for analytical integration (if supported by p.d.f)
[#2] INFO:Integration -- landau: Observables (x) are numerically integrated
[#1] INFO:NumericIntegration -- RooRealIntegral::init(landau_Int[x]) using numeric integrator RooAdaptiveGaussKronrodIntegrator1D to calculate Int(x)
 [3] int_dx landau(x) =  0.0989571029219
--- RooAbsArg ---
  Value State: clean
  Shape State: clean
  Attributes: 
  Address: 0x55e3fdb0a100
  Clients: 
  Servers: 
  Proxies: 
--- RooAbsCategory ---
  Value is "15Points" (1)
  Has the following possible values:
        WynnEpsilon = 0
        15Points = 1
        21Points = 2
        31Points = 3
        41Points = 4
        51Points = 5
        61Points = 6