Execution Time1.61s

Test: TMVA-DNN-RNN-Backpropagation-Cpu (Passed)
Build: master-x86_64-centos7-clang100-opt-no-rt-cxxmodules (olsnba08.cern.ch) on 2019-11-14 01:39:53
Repository revision: 32b17abcda23e44b64218a42d0ca69cb30cda7e0

Test Timing: Passed
Processors1

Show Command Line
Display graphs:

Test output
Testing RNN backward pass
Testing Weight Backprop using RNN with batchsize = 2 input = 2 state = 1 time = 1	using a random input
Testing weight input gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m0.0693813[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight input gradients
Testing weight state gradients:      maximum error (absolute): [NON-XML-CHAR-0x1B][32m0[NON-XML-CHAR-0x1B][39m
Testing bias gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m1.42856[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in bias state gradients
Testing Weight Backprop using RNN with batchsize = 2 input = 2 state = 3 time = 1	using a random input
Testing weight input gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m0.0324623[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight input gradients
Testing weight state gradients:      maximum error (absolute): [NON-XML-CHAR-0x1B][32m0[NON-XML-CHAR-0x1B][39m
Testing bias gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m0.0090217[NON-XML-CHAR-0x1B][39m
Testing Weight Backprop using RNN with batchsize = 3 input = 5 state = 4 time = 2	using a random input
Testing weight input gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m0.117425[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight input gradients
Testing weight state gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m0.268065[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight state gradients
Testing bias gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m0.0769378[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in bias state gradients
Testing Weight Backprop using RNN with batchsize = 2 input = 5 state = 10 time = 4	using a random input
Testing weight input gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m3.72283[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight input gradients
Testing weight state gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m4.09369[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight state gradients
Testing bias gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m0.143444[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in bias state gradients
Testing Weight Backprop using RNN with batchsize = 64 input = 5 state = 10 time = 5	using a random input
Testing weight input gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m0.258706[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight input gradients
Testing weight state gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m0.822112[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight state gradients
Testing bias gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m0.0202763[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in bias state gradients
Testing Weight Backprop using RNN with batchsize = 1 input = 5 state = 10 time = 3	with a fixed input
Testing weight input gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m3.95806[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight input gradients
Testing weight state gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m2.46411[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight state gradients
Testing bias gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m0.848027[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in bias state gradients
Testing Weight Backprop using RNN with batchsize = 32 input = 20 state = 10 time = 4	using a random input and a dense layer
Testing weight input gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m51.306[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight input gradients
Testing weight state gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m2.799[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight state gradients
Testing bias gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m0.181522[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in bias state gradients
Testing Weight Backprop using RNN with batchsize = 32 input = 5 state = 10 time = 4	using a random input and a dense layer and an extra RNN
Testing weight input gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m3.42221[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight input gradients
Testing weight state gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m14.2679[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in weight state gradients
Testing bias gradients:      maximum error (relative): [NON-XML-CHAR-0x1B][31m0.225992[NON-XML-CHAR-0x1B][39m
[NON-XML-CHAR-0x1B][31m Error [NON-XML-CHAR-0x1B][39m in bias state gradients