Execution Time2.14s

Test: TMVA-DNN-CNN-Pred-CPU (Passed)
Build: master-x86_64-centos7-clang100-opt-no-rt-cxxmodules (olsnba08.cern.ch) on 2019-11-14 01:39:53
Repository revision: 32b17abcda23e44b64218a42d0ca69cb30cda7e0

Test Timing: Passed
Processors1

Show Command Line
Display graphs:

Test output
Testing CNN Prediction:
Test1, identity output function
added Conv layer 12 x 31 x 31
added Conv layer 6 x 29 x 29
added MaxPool layer 6 x 27 x 27
1.59462 2.86406 
-1.0123 -0.234492 
2.25021 -1.48864 
2.40739 -1.08306 
-0.239234 4.58421 
2.94203 4.36532 
-0.00909549 3.64759 
-1.34986 0.889605 
-2.2169 3.91087 
-0.575514 0.724811 
1.47609 -0.384426 
6.28999 0.0911852 
1.59815 -2.59473 
0.786151 0.753262 
3.51814 0.161778 
0.310882 3.10789 
5.23385 1.4656 
2.44685 -0.043605 
3.66158 0.192233 
0.843207 1.87695 
5.20831 3.25942 
-0.572697 2.91387 
4.13553 1.8864 
2.71037 -0.474496 
2.77639 -0.0112244 
-1.73639 -1.10224 
1.43489 3.57975 
0.427735 -0.0552249 
7.28061 0.599314 
1.52715 0.316613 
-4.48167 2.2073 
2.53463 4.25209 
8.09387 -1.16048 
2.6894 8.67983 
3.07979 1.62243 
2.93971 1.62953 
0.537156 -1.25879 
1.13864 3.41714 
-0.868393 2.61095 
7.43464 2.92774 
2.14227 4.80408 
-1.18188 3.97479 
5.63028 2.46437 
-0.600717 4.46712 
-1.94661 0.219573 
4.32393 -1.41062 
1.06421 2.54087 
2.09121 5.16719 
1.73013 4.63429 
-2.82653 1.79874 
Test2, sigmoid output function
added Conv layer 12 x 31 x 31
added Conv layer 6 x 29 x 29
added MaxPool layer 6 x 27 x 27
4.96972e-05 0.790203 
0.0037723 0.0051476 
4.97438e-05 0.00177917 
0.00598988 0.508536 
0.000262294 0.0130832 
0.00605638 0.0102317 
0.000258793 0.0561532 
0.0390511 0.388766 
0.000601976 0.0559819 
0.000228106 0.152694 
0.0011531 0.193307 
0.00572154 0.172613 
9.94973e-05 0.0401404 
2.14535e-05 0.000744839 
5.95027e-05 0.0600693 
0.000444888 0.00205522 
0.000343765 0.508637 
9.44058e-06 0.179157 
0.000134943 0.213093 
0.00241759 0.000441411 
0.000119798 0.124182 
0.000228055 0.23907 
0.00139291 0.00635305 
4.39549e-05 0.00101388 
0.000326758 0.618776 
1.11431e-05 0.00520848 
0.000131547 0.00515808 
8.14066e-06 0.083061 
0.000248036 0.0550183 
0.000694717 0.23257 
0.00056127 0.230497 
0.000302633 0.408165 
0.00010589 0.0559241 
1.67904e-05 0.00639335 
0.00100532 0.248734 
5.52097e-05 0.157708 
0.000423339 0.306761 
0.000306708 0.0405154 
7.77732e-05 0.00438617 
0.00320745 0.693099 
0.00103243 0.00207402 
0.000279662 0.174597 
0.0235056 0.00660955 
0.000237912 0.00714087 
0.00213826 0.00666899 
0.00053669 0.0448974 
3.6173e-06 0.0809674 
0.00544098 0.312968 
0.000200668 0.177947 
0.000314124 0.0728609 
Test3, softmax output function
added Conv layer 12 x 31 x 31
added Conv layer 6 x 29 x 29
added MaxPool layer 6 x 27 x 27
0.606557 0.393443 
0.999999 1.01965e-06 
0.999991 9.09439e-06 
0.999931 6.87101e-05 
0.959446 0.040554 
0.996981 0.00301876 
0.999997 2.5928e-06 
0.999681 0.000318651 
0.999953 4.67043e-05 
0.999997 2.50161e-06 
0.999332 0.000668447 
0.900485 0.0995154 
0.951448 0.048552 
0.999759 0.000241467 
0.997768 0.00223232 
0.999991 8.73789e-06 
0.999049 0.000951194 
0.999304 0.000696451 
0.961789 0.0382106 
0.989452 0.010548 
0.999999 8.05285e-07 
0.66772 0.33228 
0.999995 5.30586e-06 
0.189077 0.810923 
0.999341 0.000659344 
0.988432 0.0115676 
0.970558 0.0294424 
0.999998 2.06619e-06 
0.997142 0.00285826 
0.999743 0.000257077 
0.999676 0.000324112 
0.999816 0.000184264 
0.999535 0.000464601 
0.999377 0.000622979 
0.972751 0.0272485 
1 7.16294e-08 
0.95964 0.0403599 
0.999782 0.000217654 
0.757792 0.242208 
0.998522 0.00147765 
0.999926 7.36882e-05 
0.997408 0.002592 
0.99064 0.0093602 
0.999649 0.000350552 
0.99995 5.0065e-05 
0.999707 0.000293161 
0.99486 0.00513951 
0.995663 0.00433733 
0.999995 4.78228e-06 
0.999961 3.90132e-05