Execution Time0.07s

Test: mathmore-testChebyshev (Passed)
Build: PR-4805-x86_64-mac1014-clang100-opt (macphsft17.dyndns.cern.ch) on 2020-01-22 10:09:31

Test Timing: Passed
Processors1

Show Command Line
Display graphs:

Test output
Test Cheb approx to step function :
 x = 0 true Val = 0.25 y = 0.256331 +/- 0.0121951    y@10 = 0.228925 +/- 0.0121951
 x = 0.1 true Val = 0.25 y = 0.252512 +/- 0.0121951    y@10 = 0.226566 +/- 0.0121951
 x = 0.2 true Val = 0.25 y = 0.260259 +/- 0.0121951    y@10 = 0.281711 +/- 0.0121951
 x = 0.3 true Val = 0.25 y = 0.234678 +/- 0.0121951    y@10 = 0.209105 +/- 0.0121951
 x = 0.4 true Val = 0.25 y = 0.283127 +/- 0.0121951    y@10 = 0.270833 +/- 0.0121951
 x = 0.5 true Val = 0.75 y = 0.75 +/- 0.0121951    y@10 = 0.567073 +/- 0.0121951
 x = 0.6 true Val = 0.75 y = 0.772995 +/- 0.0121951    y@10 = 0.777924 +/- 0.0121951
 x = 0.7 true Val = 0.75 y = 0.737319 +/- 0.0121951    y@10 = 0.760932 +/- 0.0121951
 x = 0.8 true Val = 0.75 y = 0.759034 +/- 0.0121951    y@10 = 0.732803 +/- 0.0121951
 x = 0.9 true Val = 0.75 y = 0.752283 +/- 0.0121951    y@10 = 0.762763 +/- 0.0121951
 x = 1 true Val = 0.75 y = 0.755864 +/- 0.0121951    y@10 = 0.75888 +/- 0.0121951
Test integral of step function :
 x = 0 true Val = 0 y = 2.77556e-17 +/- 5.85172e-06    y@10 = 0.000229811 +/- 0.00152896
 x = 0.1 true Val = 0 y = 0.0250035 +/- 5.85172e-06    y@10 = 0.025005 +/- 0.00152896
 x = 0.2 true Val = 0 y = 0.0500326 +/- 5.85172e-06    y@10 = 0.0498984 +/- 0.00152896
 x = 0.3 true Val = 0 y = 0.0747704 +/- 5.85172e-06    y@10 = 0.0755759 +/- 0.00152896
 x = 0.4 true Val = 0 y = 0.0998806 +/- 5.85172e-06    y@10 = 0.097542 +/- 0.00152896
 x = 0.5 true Val = 0 y = 0.133353 +/- 5.85172e-06    y@10 = 0.137377 +/- 0.00152896
 x = 0.6 true Val = 0 y = 0.209522 +/- 5.85172e-06    y@10 = 0.207387 +/- 0.00152896
 x = 0.7 true Val = 0 y = 0.284639 +/- 5.85172e-06    y@10 = 0.286174 +/- 0.00152896
 x = 0.8 true Val = 0 y = 0.359398 +/- 5.85172e-06    y@10 = 0.358491 +/- 0.00152896
 x = 0.9 true Val = 0 y = 0.434427 +/- 5.85172e-06    y@10 = 0.435314 +/- 0.00152896
 x = 1 true Val = 0 y = 0.509426 +/- 5.85172e-06    y@10 = 0.510412 +/- 0.00152896
Test Cheb approx to Gamma function :
 x = 1 true Val = 1 y = 1 +/- 8.05455e-16    y@10 = 1 +/- 3.11773e-08
 x = 1.1 true Val = 0.951351 y = 0.951351 +/- 8.05455e-16    y@10 = 0.951351 +/- 3.11773e-08
 x = 1.2 true Val = 0.918169 y = 0.918169 +/- 8.05455e-16    y@10 = 0.918169 +/- 3.11773e-08
 x = 1.3 true Val = 0.897471 y = 0.897471 +/- 8.05455e-16    y@10 = 0.897471 +/- 3.11773e-08
 x = 1.4 true Val = 0.887264 y = 0.887264 +/- 8.05455e-16    y@10 = 0.887264 +/- 3.11773e-08
 x = 1.5 true Val = 0.886227 y = 0.886227 +/- 8.05455e-16    y@10 = 0.886227 +/- 3.11773e-08
 x = 1.6 true Val = 0.893515 y = 0.893515 +/- 8.05455e-16    y@10 = 0.893515 +/- 3.11773e-08
 x = 1.7 true Val = 0.908639 y = 0.908639 +/- 8.05455e-16    y@10 = 0.908639 +/- 3.11773e-08
 x = 1.8 true Val = 0.931384 y = 0.931384 +/- 8.05455e-16    y@10 = 0.931384 +/- 3.11773e-08
 x = 1.9 true Val = 0.961766 y = 0.961766 +/- 8.05455e-16    y@10 = 0.961766 +/- 3.11773e-08
Test derivative of gammma :
 x = 1 true Val = 0 y = -0.577216 +/- 1.32269e-16    y@10 = -0.577216 +/- 2.4408e-07
 x = 1.1 true Val = 0 y = -0.40314 +/- 1.32269e-16    y@10 = -0.40314 +/- 2.4408e-07
 x = 1.2 true Val = 0 y = -0.265387 +/- 1.32269e-16    y@10 = -0.265387 +/- 2.4408e-07
 x = 1.3 true Val = 0 y = -0.151844 +/- 1.32269e-16    y@10 = -0.151844 +/- 2.4408e-07
 x = 1.4 true Val = 0 y = -0.0544643 +/- 1.32269e-16    y@10 = -0.0544643 +/- 2.4408e-07
 x = 1.5 true Val = 0 y = 0.0323384 +/- 1.32269e-16    y@10 = 0.0323384 +/- 2.4408e-07
 x = 1.6 true Val = 0 y = 0.112625 +/- 1.32269e-16    y@10 = 0.112625 +/- 2.4408e-07
 x = 1.7 true Val = 0 y = 0.189495 +/- 1.32269e-16    y@10 = 0.189495 +/- 2.4408e-07
 x = 1.8 true Val = 0 y = 0.265436 +/- 1.32269e-16    y@10 = 0.265436 +/- 2.4408e-07
 x = 1.9 true Val = 0 y = 0.342566 +/- 1.32269e-16    y@10 = 0.342566 +/- 2.4408e-07